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Abstract

In this article, we study the difference between the solutions of the phase-lagging equation (PLE), a new heat conduction equation, and
the damped wave equation (DWE) with a heat source. The exact solution of the PLE is obtained using the Laplace transform method,
and is approximated using an approximate analytical method when the time lag is small since the exact solution is practically not com-
putable for the small time lag case. Results show that the DWE is a good approximation to the PLE when the time lag is small.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transport at the microscale is very important in
microtechnology applications. The lagging response must
be included [1–6] under low temperature or high heat-flux
conditions. Thus, the traditional Fourier’s law [7]

~qð~r; tÞ ¼ �Kruð~r; tÞ ð1Þ

should be modified as follows [8]:

~qð~r; t þ s0Þ ¼ �Kruð~r; tÞ; ð2Þ

where~q is the heat flux vector, K is the thermal conductiv-
ity, u is the absolute temperature,~r is the position vector,
and t is the time. Here, s0(>0) represents the time lag re-
quired to establish steady thermal conduction in a volume
element once a temperature gradient has been imposed
across it. This lagging response describes the heat flux vec-
tor and the temperature gradient occurring at different
instants of time in the heat transfer process. This quan-
tity has been experimentally determined for a varieties of
materials [1,9,10]. Combined with the energy conservation
law
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qCp
ouð~r; tÞ

ot
þr �~qð~r; tÞ ¼ Q; ð3Þ

where q is the mass density, Cp is the specific heat at con-
stant pressure, and Q is the heat source, Eq. (2) results in
the phase-lagging equation (PLE) as follows:

ouð~r; t þ s0Þ
ot

¼ jr2uð~r; tÞ þ Q; ð4Þ

where j = K/(qCp) is the thermal diffusivity. On the other
hand, approximating Eq. (4) by its first-order Taylor series
expansion yields the damped wave equation (DWE) [11–24]

ouð~r; tÞ
ot

þ s0

o2uð~r; tÞ
ot2

¼ jr2uð~r; tÞ þ Q. ð5Þ

Recently, we have studied the difference between the solu-
tions of the phase-lagging heat transport equation and the
damped wave equation by investigating the solutions of a
test problem [25]. The solutions of the phase-lagging heat
transport equation were obtained using the Laplace trans-
form method and an approximate analytical method [26].

In this study, we extend our study to the phase-lagging
heat transport equation with a heat source and compare
the difference between the solutions of the phase-lagging
heat transport equation and the damped wave equation
with a heat source by investigating the solutions of a test
problem.
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Nomenclature

Ci coefficient in a series
K thermal conductivity
j thermal diffusivity
M integer
Q heat source
~q heat flux
T(t) function of t

�T ðsÞ Laplace transform of T(t)
u(x, t) dimensionless temperature
b p2

$ gradient operator
Dt, Dx time increment and grid size, respectively
k0 time lag
s0, sc values of the dimensionless time lag
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2. Problem formulation and solution

Consider a simple 1D phase-lagging heat transport
equation with a time delay s0 and a heat source
Q = e�tsin [px], coupled with initial and boundary condi-
tions as follows:

ouðx; t þ s0Þ
ot

¼ o2uðx; tÞ
ox2

þ e�t sin½px�;

ðx; tÞ 2 ð0; 1Þ � ð0;1Þ; ð6aÞ
uð0; tÞ ¼ 0; uð1; tÞ ¼ 0; t > 0; ð6bÞ
uðx; 0Þ ¼ sin½px�; ðx; tÞ 2 ð0; 1Þ � ½�s0; 0�. ð6cÞ

Using the first-order Taylor series expansion of Eq. (6a),
we obtain the damping wave equation with initial and
boundary conditions as follows:

ouðx; tÞ
ot

þ s0

o2uðx; tÞ
ot2

¼ o2uðx; tÞ
ox2

þ e�t sin½px�;

ðx; tÞ 2 ð0; 1Þ � ð0;1Þ ð7aÞ
uð0; tÞ ¼ 0; uð1; tÞ ¼ 0; t > 0 ð7bÞ
uðx; 0Þ ¼ sin½px�; ouðx; 0Þ=ot ¼ 0;

ðx; tÞ 2 ð0; 1Þ � ½�s0; 0�. ð7cÞ

The exact solution of Eqs. (7a)–(7c) can be obtained using
the separation of variables method as follows:

uðx; tÞ¼ sin½px� �

e�t=2s0 coshðxtÞþ sinhðxtÞffiffiffiffi
jDj
p

� �
þ 4s2

0

ð1�2s0Þ2�D
e�t

� 2s2
0ffiffiffiffi

jDj
p

ð1�
ffiffiffiffi
jDj
p

�2s0Þ
e
�1þ
ffiffiffi
jDj
p

2s0
t

þ 2s2
0ffiffiffiffi

jDj
p

ð1þ
ffiffiffiffi
jDj
p

Þ
ð�2s0Þ

e

�1�
ffiffiffi
jDj
p

2s0
t
; s0 < sc

e�t=2s0 1þ t
2s0
�ð 2s0

1�2s0
Þ2� 2s0

1�2s0
t

h i
þð 2s0

1�2s0
Þ2e�t; s0¼ sc

e�t=2s0 cosðxtÞþ sinðxtÞffiffiffiffi
jDj
p

� �
þ eð2aþ1Þt � 1

ðaþ1Þ2þx2

þeat � 1
ðaþ1Þ2þx2

½cosðxtÞ� aþ1
x sinðxtÞ�; s0 > sc

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ
where sc = 1/4p2 is a critical value of the thermal lag time,
a ¼ �t

2s0
, x ¼ ð2s0Þ�1

ffiffiffiffiffiffi
jDj

p
, and D = 1 � 4p2s0. Here, we re-

ject the case s0 > sc, because it allows u to assume negative
values. This can be seen that if the present Q is replaced by
Q0e�tsin [px], where Q0 is a non-negative constant, then
s0 > sc would have to rejected so that u < 0 could never
occur when Q0 = 0. Furthermore, it is noted that by letting
s0! 0 in Eq. (8), one may recover the classic Fourier-
based solution:

uðx; tÞ ¼ sin½px� � e�t

p2 � 1
þ p2 � 2

p2 � 1
e�p2t

� �
. ð9Þ

We now solve Eqs. (6a)–(6c) using the Laplace trans-
form method. To this end, we first assume the solution to
be u(x, t) = T(t)sin [px] and substitute it into Eq. (6a). This
gives

T 0ðt þ s0Þ þ p2T ðtÞ ¼ e�t. ð10Þ

That is,

T 0ðtÞ þ p2T ðt � s0Þ ¼ e�ðt�s0Þ; ð11Þ

where T(t) = 1, when t 2 [�s0,0], obtained from the initial
condition, Eq. (6c). Multiplying Eq. (11) by e�st and inte-
grating it with respect to t over the interval (0,1), we
obtainZ 1

0

T 0ðtÞe�stdt þ p2

Z 1

0

T ðt � s0Þe�stdt

¼
Z 1

0

e�ðt�s0Þe�stdt ¼ es0

sþ 1
. ð12Þ

It can be seen that the first integral on the left-hand-side
of Eq. (12) equals to sT(s) � 1 and the second one can be
expressed as

p2

Z 1

0

T ðt � s0Þe�stdt ¼ p2

Z 1

�s0

T ðuÞe�sðuþs0Þdu

¼ p2

Z 1

0

T ðuÞe�sðuþs0Þdu

þ p2

Z 0

�s0

T ðuÞe�sðuþs0Þdu

¼ p2e�ss0 �T ðsÞ þ p2ð1� e�ss0Þ
s

. ð13Þ
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Thus, we obtain the Laplace transform �T ðsÞ as follows

�T ðsÞ ¼ 1

s
� p2

sðsþ p2e�ss0Þ þ
es0

ðsþ 1Þðsþ p2e�ss0Þ

¼ 1

s
�
X1
n¼0

ð�1Þnp2ðnþ1Þe�ss0ns�n�2

þ es0

sþ 1

X1
n¼0

ð�1Þnp2ne�ss0ns�n�1. ð14Þ

Inverting Eq. (14) term-by-term using a table of inverses
along with the properties of the Laplace transform and
convolution theory [27], we obtain

T ðtÞ ¼ 1�
Xt=s0b c

n¼0

ð�1Þnp2ðnþ1Þ ðt � s0nÞnþ1

ðnþ 1Þ!

þ es0

Xt=s0b c

n¼0

ð�1Þnp2n

n!

Z t

0

ðs� s0nÞne�ðt�sÞds

� �
; ð15Þ
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Fig. 1. Coefficient Ci for (a) s0 = 0, (b) s0
where bt/s0c stands for the largest integer that is less than
or equal to t/s0. Hence, the solution of Eqs. (6a)–(6c) can
be expressed as follows:

uðx; tÞ ¼ 1�
Xt=s0b c

n¼0

ð�1Þnp2ðnþ1Þ ðt � s0nÞnþ1

ðnþ 1Þ!

(

þes0

Xt=s0b c

n¼0

ð�1Þnp2nAðnÞ
n!

)
sin½px�

¼
Xt=s0þ1b c

n¼0

ð�1Þnp2n ðt � s0n� s0Þn

n!

(

þes0

Xt=s0b c

n¼0

ð�1Þnp2nAðnÞ
n!

)
sin½px�; ð16Þ

where A(n) is calculated by the formula
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AðnÞ ¼
Z t

0

ðs� s0nÞnes�tds

¼ ðs� s0nÞnes�tjt0 � n
Z t

0

ðs� s0nÞn�1es�tds

¼ ðt � s0nÞn � ð�s0nÞne�t½ � � n
�
ðs� s0nÞn�1es�tjt0

�ðn� 1Þ
Z t

0

ðs� s0nÞn�2es�tds

�

¼ ðt � s0nÞn � ð�s0nÞne�t½ � � n ðt � s0nÞn�1 � ð�s0nÞn�1e�t
h i

þ � � � þ ð�1Þnn! 1� e�tð Þ
¼ ðt � s0nÞn � ð�s0nÞne�t

þ
Xn

m¼1

ð�1Þn�mþ1
Yn

j¼m

j

 !
ðt � s0nÞm�1 � ð�s0nÞm�1e�t
h i( )

.

ð17Þ
It is noted that when t� s0 that last term in A(n) con-

tains n!, which cancels the n! in the denominator in T(t)
or u(x, t). This implies that Eq. (16) is practically incomput-
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Fig. 2. u versus x for (a) t = 2(Dt), (b) t = 20(Dt), (c) t = 200(
able because p2n in the numerator is sufficiently large. To
overcome this difficulty, we introduce an approximate ana-
lytical method based on the idea in [25,26]. Letting

T ðtÞ ¼
XM

i¼0

Citi; ð18Þ

where M is a large integer and C0 = T(0), and substituting
Eq. (18) into Eq. (10) give

XM

i¼1

Ciiðt þ s0Þi�1 ¼ �p2
XM

i¼0

Citi þ e�t. ð19Þ

Letting t = 0, we obtain

XM

i¼1

Ciis
i�1
0 ¼ �p2C0 þ 1. ð20Þ

Differentiating Eq. (19) with respect to t and letting t = 0 give

XM

i¼2

Ciiði� 1Þsi�2
0 ¼ �p2C1 � 1. ð21Þ
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Dt), (d) t = 2000(Dt); Dx = 0.04; Dt = 0.0004; and s0 = 0.
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Differentiating Eq. (19) twice with respect to t and letting
t = 0 give

XM

i¼3

Ciiði� 1Þði� 2Þsi�3
0 ¼ �2!p2C2 þ 1. ð22Þ

In general, we have

XM

i¼kþ1

Ciiði� 1Þ � � � ði� kÞsi�k�1
0

¼ �p2k!Ck þ ð�1Þk; k ¼ 0; 1; . . . ;M � 1. ð23Þ

The next step is to solve the coefficients, Ck, k =
1, . . . ,M. Letting k = M � 1, we obtain from Eq. (23)

CM M ! ¼ �p2ðM � 1Þ!CM�1 þ ð�1ÞM�1
; ð24Þ

which yields

CM�1 ¼ a1CM þ b1;
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Fig. 3. u versus x for (a) t = 2(Dt), (b) t = 20(Dt), (c) t = 200(Dt)
where

a1 ¼ �
M
p2
; b1 ¼

ð�1ÞM�1

p2ðM � 1Þ! . ð25Þ

Letting k = M � 2, we obtain from Eq. (23)

CM�2 ¼ a2CM þ b2; ð26Þ

where

a2 ¼ �
1

p2

MðM � 1Þs0

1!
þ a1ðM � 1Þ

0!

� �
;

b2 ¼
ð�1ÞM�2

p2ðM � 2Þ!�
ðM � 1Þb1

1!p2
. ð27Þ

In general, we obtain

CM�k ¼ akCM þ bk; k ¼ 1; 2; . . . M ; ð28Þ
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, (d) t = 2000(Dt); Dx = 0.04; Dt = 0.0004; and s0 = 0.001sc.



2798 S. Su, W. Dai / International Journal of Heat and Mass Transfer 49 (2006) 2793–2801
where

ak ¼
1

�p2

Xk

i¼1

ak�isi�1
0

ði� 1Þ! �
YM�kþi

j¼M�kþ1

j

" #
; a0 ¼ 1; ð29aÞ

bk ¼
ð�1ÞM�k

p2ðM � kÞ!�
1

p2

Xk�1

i¼1

bk�isi�1
0

ði� 1Þ! �
YM�kþi

j¼M�kþ1

j

" #
. ð29bÞ

Since C0 = T(0) = 1, we can solve for CM from Eq. (28)
by letting k = M

CM ¼ ðC0 � bMÞ=aM . ð30Þ
Once CM is determined, the rest of coefficients Ci

(i = 1,2, . . . ,M) can be easily obtained from Eqs. (28) and
(29) and hence an approximate analytical solution for the
case of t� s0 can be expressed as follows

uðx; tÞ ¼
XM

i¼0

Citi sin½px�. ð31Þ
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Fig. 4. u versus x for (a) t = 2(Dt), (b) t = 20(Dt), (c) t = 200(Dt
To determine how large the integer M should be, we have,
in Fig. 1, plotted the coefficients Ci (i = 0,1,2, . . . ,M), where
M = 50, 100, 150, for s0 = 0,0.25sc, 0.5sc, sc. It can be seen
that for each value of s0 considered, the coefficients do not
change significantly as the value of M is increased. Thus,
we chose M = 50 in this study.

It should be pointed out that Tzou [8] has developed a
numerical inversion algorithm for the Laplace transform.
Briefly, if �T ðsÞ ¼ L½T ðtÞ�, then

T ðtÞ � e4:7

t
1

2
�T

4:7

t

� �
þRe

XN

n¼1

ð�1Þn �T
4:7þ inp

t

� �" #( )
;

t > 0; ð32Þ

where N� 1 is an integer and Re[1] denotes the real part of
a complex number 1. However, �T ðsÞ in Eq. (16) is a series
and must be calculated approximately.
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3. Numerical results and testing

We have computed and plotted Eq. (8), the exact solu-
tion to IBVP (7) involving the DWE, the exact and approx-
imate analytic solutions, Eq. (16) and Eq. (31), respectively,
to IBVP (6) involving the phase-lagging equation, and for
comparison Eq. (9), the exact solution of the traditional
heat conduction equation. In our computation, we chose
the time increment, Dt, and the grid size, Dx, to be
0.0004 and 0.04, respectively.

In Figs. 2–6, we have plotted the temporal evolution of
the temperature, u(x, t), versus x profile for s0 = 0, 0.001sc,
0.25sc, 0.5sc, sc, and the time-sequence consisting of the
times of 2(Dt), 20(Dt), 200(Dt), and 2000(Dt). Fig. 2 shows
that these two solutions corresponding to Eqs. (9) and (31),
are the same when s0 = 0, as expected. The solution given
in Eq. (16) is incomputable because t/s0 is undefined.
Fig. 3 plots that the three solutions corresponding to
Eqs. 8, 9 and 31 when s0 = 0.001sc. One may see that the
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Fig. 5. u versus x for (a) t = 2(Dt), (b) t = 20(Dt), (c) t = 200(D
solutions given in Eqs. (9) and (31) overlap and the level
of the solution corresponding to Eq. (8) is lower when t

is large. Again the solution given in Eq. (16) is incomput-
able since t/s0 is still large. When s0 = 0.25sc, one may
see from Fig. 4 that the solutions corresponding to Eqs.
(16) and (31) are very close to each other. When
t = 2000(Dt), the solution corresponding to Eq. (16) is
not computable. Similar results can be seen in Figs. 5
and 6. Furthermore, one can see from Figs. 3–6 that by
decreasing s0, the solutions given in Eq. (16) and (31)
become ‘‘close’’ to the one corresponding to Eq. (8). This
implies that when s0! 0, the DWE is a good approxima-
tion to the phase-lagging heat transport equation.

4. Conclusion

The difference between the solutions of the PLE and
the DWE with a heat source are compared by investigat-
ing the solutions of a test problem. The exact solution of
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Fig. 6. u versus x for (a) t = 2(Dt), (b) t = 20(Dt), (c) t = 200(Dt), (d) t = 2000(Dt); Dx = 0.04; Dt = 0.0004; and s0 = sc.
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the PLE is obtained using the Laplace transform method,
and is approximated using an approximate analytic
method when the time lag is small since the exact solution
is practically not computable for the small time lag
case. Results show that the DWE is a good approximation
of the phase-lagging heat transport equation when s0 is
small.

It should be pointed out that in the test problem, we
chose a simple heat source Q = e�tsin [px]. For a general
heat source, one may expand the function into a Fourier
sine series as described in [26].
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